Abstract

Quantitative analyses of bone using micro-computed tomography (μCT) are routinely employed in preclinical research, and virtual image reorientation to a consistent reference frame is a common processing step. The purpose of this study was to quantify error introduced by common reorientation algorithms in μCT-based characterization of bone. Mouse and rat tibial metaphyses underwent μCT scanning at a range of resolutions (6-30 μm). A trabecular volume-of-interest (VOI) was manually selected. Image stacks were analyzed without rotation, following 45° In-Plane axial rotation, and following 45° Triplanar rotation. Interpolation was performed using Nearest-Neighbor, Linear, and Cubic interpolations. Densitometric (bone volume fraction, tissue mineral density, bone mineral density) and morphometric variables (trabecular thickness, trabecular spacing, trabecular number, structural model index) were computed for each combination of voxel size, rotation, and interpolation. Significant reorientation error was measured in all parameters, and was exacerbated at higher voxel sizes, with relatively low error at 6 and 12 μm (max. reorientation error in BV/TV was 2.9% at 6 μm, 7.7% at 12 μm and 36.5% at 30 μm). Considering densitometric parameters, Linear and Cubic interpolations introduced significant error while Nearest-Neighbor interpolation caused minimal error, and In-Plane rotation caused greater error than Triplanar. Morphometric error was strongly and intricately dependent on the combination of rotation and interpolation employed. Reorientation error can be eliminated by avoiding reorientation altogether or by "de-rotating" VOIs from reoriented images back to the original reference frame prior to analysis. When these are infeasible, reorientation error can be minimized through sufficiently high resolution scanning, careful selection of interpolation type, and consistent processing of all images. © 2018 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:2762-2770, 2018.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.