Abstract
Methods are developed and analyzed for estimating the distance to a local minimizer of a nonlinear programming problem. One estimate, based on the solution of a constrained convex quadratic program, can be used when strict complementary slackness and the second-order sufficient optimality conditions hold. A second estimate, based on the solution of an unconstrained nonconvex, nonsmooth optimization problem, is valid even when strict complementary slackness is violated. Both estimates are valid in a neighborhood of a local minimizer. An active set algorithm is developed for computing a stationary point of the nonsmooth error estimator. Each iteration of the algorithm requires the solution of a symmetric, positive semidefinite linear system, followed by a line search. Convergence is achieved in a finite number of iterations. The error bounds are based on stability properties for nonlinear programs. The theory is illustrated by some numerical examples.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.