Abstract

In this paper, a mixed formulation and its discretization are introduced for elastoplasticity with linear kinematic hardening. The mixed formulation relies on the introduction of a Lagrange multiplier to resolve the non-differentiability of the plastic work function. The main focus is on the derivation of a priori and a posteriori error estimates based on general discretization spaces. The estimates are applied to several low-order finite elements. In particular, a posteriori estimates are expressed in terms of standard residual estimates. Numerical experiments are presented, confirming the applicability of the a posteriori estimates within an adaptive procedure.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.