Abstract
We propose some error estimates for the discrete solution of an optimal control problem with first-order state constraints, where the trajectories are approximated with a classical Euler scheme. We obtain order 1 approximation results in the $L^\infty$ norm (as opposed to the order 2/3 results obtained in the literature). We assume either a strong second-order optimality condition or a weaker formulation in the case where the state constraint is scalar and satisfies some hypotheses for junction points, and where the time step is constant. Our technique is based on some homotopy path of discrete optimal control problems that we study using perturbation analysis of nonlinear programming problems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.