Abstract

Gaussian Process Morphable Models (GPMMs) unify a variety of non-rigid deformation models for surface and image registration. Deformation models, such as B-splines, radial basis functions, and PCA models are defined as a probability distribution using a Gaussian process. The method depends heavily on the low-rank approximation of the Gaussian process, which is mandatory to obtain a parametric representation of the model. In this article, we propose the use of the pivoted Cholesky decomposition for this task, which has the following advantages: (1) Compared to the current state of the art used in GPMMs, it provides a fully controllable approximation error. The algorithm greedily computes new basis functions until the user-defined approximation accuracy is reached. (2) Unlike the currently used approach, this method can be used in a black-box-like scenario, whereas the method automatically chooses the amount of basis functions for a given model and accuracy. (3) We propose the Newton basis as an alternative basis for GPMMs. The proposed basis does not need an SVD computation and can be iteratively refined. We show that the proposed basis functions achieve competitive registration results while providing the mentioned advantages for its computation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.