Abstract

Motivation: The decision to commit some or many false positives in practice rests with the investigator. Unfortunately, not all error control procedures perform the same. Our problem is to choose an error control procedure to determine a P-value threshold for identifying differentially expressed pathways in high-throughput gene expression studies. Pathway analysis involves fewer tests than differential gene expression analysis, on the order of a few hundred. We discuss and compare methods for error control for pathway analysis with gene expression data.Results: In consideration of the variability in test results, we find that the widely used Benjamini and Hochberg's (BH) false discovery rate (FDR) analysis is less robust than alternative procedures. BH's error control requires a large number of hypothesis tests, a reasonable assumption for differential gene expression analysis, though not the case with pathway-based analysis. Therefore, we advocate through a series of simulations and applications to real gene expression data that researchers control the number of false positives rather than the FDR.Availability: Our R package, EPath.omg is available at http://sphhp.buffalo.edu/biostat/research/software.Contact: dlgold@buffalo.eduSupplementary information: Supplementary data are available at Bioinformatics online.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.