Abstract
The goal of this paper is further to study a kind of generalized vector inverse quasi-variational inequality problems and to obtain error bounds in terms of the residual gap function, the regularized gap function, and the global gap function by utilizing the relaxed monotonicity and Hausdorff Lipschitz continuity. These error bounds provide effective estimated distances between an arbitrary feasible point and the solution set of generalized vector inverse quasi-variational inequality problems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.