Abstract

Increasing interest in the use of digital image correlation (DIC) for full-field surface shape and deformation measurements has led to an on-going need for both the development of theoretical formulae capable of providing quantitative confidence margins and controlled experiments for validation of the theoretical predictions. In the enclosed work, a series of stereo vision experiments are performed in a manner that provides sufficient information for direct comparison with theoretical predictions using formulae developed in Part I. Specifically, experiments are performed to obtain appropriate optimal estimates and the uncertainty margins for the image locations/displacements, 3-D locations/displacements and strains when using the method of subset-based digital image correlation for image matching. The uncertainty of locating the 3-D space points using subset-based pattern matching is estimated by using theoretical formulae developed in Part I and the experimentally defined confidence margins for image locations. Finally, the uncertainty in strains is predicted using formulae that involves both the variance and covariance of intermediate variables during the strain calculation process. Results from both theoretical predictions and the experimental work show the feasibility and accuracy of the predictive formulae for estimating the uncertainty in the stereo-based deformation measurements.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.