Abstract
Raman scattering is studied in natural diamond crystals with radiation-induced defects produced by implantation of high energy Xe and Kr ions (ion kinetic energy >1 MeV/amu) and by irradiation with fast reactor neutrons (kinetic energy >100 keV). Confocal measurements of the Raman spectra along the surface of an oblique section of the ionimplanted diamonds are used to study the radiation damage profile. The evolution of the Raman scattering spectra with depth of the damaged layer in the ion-implanted diamonds, and as a function of annealing temperature of the neutron-irradiated diamond, is determined by spatial localization of phonons in the radiation disordered crystal lattice and by the formation of associations of intrinsic defects in the lattice.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.