Abstract
The new algorithms for computing the Molien generating function for a representation of a finite group obtained in the preceding paper are applied to obtain an expression which can be used for irreducible representation (*kn) of any crystallographic space group G. It proves convenient to express M (Γ,G;z) as a sum: M (Γ,G;z) =1/‖P‖Σkckm (Γ,gk;z), where the partial Molien function m (Γ;gk;z) is labelled by a coset representative gk carrying the class index k of the point group P=G/T, T being the translation group, the sum is over classes k, and ck is the order of class Ck(P). The resulting form was used to compute M (Γ,G;z) for irreducible representations *Γn, *Xn, *Rn of nonsymmorphic space group A‐15 or O3h‐Pm3n in which many high temperature superconducting crystals occur. Certain of these representations (matrix groups) are identified as generalized Coxeter groups, i.e., unitary groups generated by reflections. The Molien function for these groups as the required form given by Shephard and Todd: M (Γ...
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.