Abstract

Abstract The formation of the first planetesimals and the final growth of planetary cores relies on the abundance of small pebbles. The efficiencies of both the streaming instability (SI) process, suggested to catalyze the early growth of planetesimals, and the pebble-accretion process, suggested to accelerate the growth of planetary cores, depend on the sizes of solids residing in the disk. In particular, these processes were found to be sensitive to size distribution of solids, and efficient planetesimal formation and growth through these channels require a limited pebble size distribution. Here we show that aeolian erosion, a process that efficiently grinds down boulders into a mono-sized distribution of pebbles, provides a natural upper limit for the maximal pebble sizes (in terms of their Stokes number). We find the dependence of this upper limit on the radial separation, disk age, turbulence strength, and the grain-size composition of the boulders in the disk. SI is favorable in areas with a Stokes number less than 0.1, which is found in the inner sub-astronomical-unit regions of the disk. This upper limit shapes the size distribution of small pebbles and thereby catalyzes the early onset of planetesimal formation due to SI, and the later core accretion growth through pebble accretion.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.