Abstract

High-speed fluid-carried sand particles pose a significant challenge to oil well screen pipes, leading to sand control failure and adversely affecting the well's production and recovery rates. This research targets the commonly used metal mesh screen pipe in oil well sand production and establishes a full-sized three-dimensional structure model. A fluid-solid coupling of discrete particle flow numerical simulation algorithm is incorporated to formulate a novel method for predicting the screen pipe's erosion life. This method provides a solution to the complex task of predicting the pipe's lifespan under oil sand fluid erosion. The analysis elucidates the impact of sand particles on the velocity distribution and erosion rate of the metal mesh at varying velocities, facilitating the prediction of the mesh screen pipe's erosion life. Key findings reveal that the velocity and erosion rate vary across the different layers. The first layer screen experiences velocity and erosion rates that are 3.6-3.76 times and 2.45-2.50 times, respectively, higher than those at the inlet. The second layer screen undergoes velocity and erosion rates 2.32-2.43 times and 1.04-1.06 times, respectively, higher than those at the inlet. Erosion failure primarily occurs in the first layer screen due to velocity expansion instigated by the screen tube's structure. The discrete flow numerical simulation method proves valuable in predicting the mesh screen's erosion life at different flow rates, with a maximum error of 6.38% when compared with field monitoring life values. This method introduces a new technical approach to predicting the life span of metal mesh screens in oil wells. The study concludes by suggesting measures to extend the screen pipe's lifespan, thereby enhancing oil recovery.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.