Abstract

The Ernst formulation of the Einstein equations is generalised to accommodate $f(R)$ theories of gravity. It is shown that, as in general relativity, the axisymmetric $f(R)$ field equations for a vacuum spacetime that is either stationary or cylindrically symmetric reduce to a single, non-linear differential equation for a complex-valued scalar function. As a worked example, we apply the generalised Ernst equations to derive a $f(R)$ generalisation of the Zipoy-Voorhees metric, which may be used to describe the gravitational field outside of an ellipsoidal neutron star. We also apply the theory to investigate the phase speed of large-amplitude gravitational waves in $f(R)$ gravity in the context of soliton-like solutions that display shock-wave behaviour across the causal boundary.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.