Abstract

Bone cells respond to various mechanical stimuli including fluid shear stress (FSS) in vitro. Induction of cyclooxygenase-2 (COX-2) is thought to be important for the anabolic effects of mechanical loading. Recently, extracellular-signal-regulated kinase 5 (ERK5) has been found to be involved in multiple cellular processes. However, the relationship between ERK5 and the induction of COX-2 is still unknown. Here, we investigated the potential involvement of ERK5 in the response of pre-osteoblastic MC3T3-E1 cells upon FSS. MC3T3-E1 cells were subjected to 12 dyn/cm(2) FSS. Then, we established a ERK5 small interfering RNA (siRNA) transfected cell line using the MC3T3-E1 cells. After the successful transfection confirmed by real-time reverse transcription-polymerase chain reaction and Western blotting, the expression of COX-2, cAMP response element-bindingprotein (CREB), and nuclear factor kappa B cells (NF-κB) were assayed for downstream effectors of activated ERK5 under FSS by Western blotting. Our results showed that FSS could stimulate COX-2 activity, and induce the phosphorylation of ERK5, CREB, and NF-κB. When the MC3T3-E1 cells were transfected using siRNA before exposure to FSS, COX-2 activity was suppressed, and the phosphorylation of CREB and NF-κB was significantly downregulated. In summary, we demonstrated that ERK5 pathway is essential in the induction of COX-2 gene.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.