Abstract

This study develops a comprehensive vibrational analysis of rotating nanobeams on visco-elastic foundations with thermal effects based on the modified couple stress and Eringen’s nonlocal elasticity theories. This approach accurately simulates the nonlocal stress and size effects. Higher-order shear deformation beam theory and the generalized differential quadrature method are used to obtain the numerical results. The effects of nonlocal parameters, length scale, Winkler–Pasternak coefficients, thermal gradient, slenderness ratios, rotating velocity, and viscoelastic coefficient are demonstrated and discussed in detail. Mode switching and the importance of the correct choice of theory and associated size effect parameters are highlighted.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.