Abstract
It is an established fact that quantum coherences have thermodynamic value. The natural question arises, whether other genuine quantum properties such as entanglement can also be exploited to extract thermodynamic work. In the present analysis, we show that the ergotropy can be expressed as a function of the quantum mutual information, which demonstrates the contributions to the extractable work from classical and quantum correlations. More specifically, we analyze bipartite quantum systems with locally thermal states, such that the only contribution to the ergotropy originates in the correlations. Our findings are illustrated for a two-qubit system collectively coupled to a thermal bath.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Physics A: Mathematical and Theoretical
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.