Abstract
We study the stationary measures of an infinite Hamiltonian system of interacting particles in ℝ 3 subject to a stochastic local perturbation conserving energy and momentum. We prove that the translation invariant measures that are stationary for the deterministic Hamiltonian dynamics, reversible for the stochastic dynamics, and with finite entropy density, are convex combination of “Gibbs” states. This result implies hydrodynamic behavior for the systems under consideration.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.