Abstract

In this correspondence, the ergodic channel capacity at a low signal-to-noise ratio (SNR) is established for variable-gain and fixed-gain amplify-and-forward (AF) relay systems in a generic noise environment. Long-term path loss and short-term channel fading are considered in evaluating the capacity. Since analytic solutions to the capacity are difficult to obtain, we seek approximations and derive corresponding optimal amplification coefficients and power loadings. Useful insights are revealed for the impact of generic noise and relay locations on the capacity and relay-operating status for both variable-gain and fixed-gain relaying. Simulations are provided to verify the derived results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.