Abstract

Defect construction and rare earth doping are the linchpins to completing the target of partial electronic regulation. In Er3+/Sm3+ co-doping Bi2O2CO3, rare earth doping resulted in the exposure of {001} crystal plane in Bi2O2CO3 and cause surface defects and electron traps, achieving wide light response capability and fast carrier separation. Furthermore, a potential TC degradation route was acknowledged derived from LC-MS. Then, the median lethal concentration LC50 (96 h) is 80 ppm, probing the 2E2SBOC photocatalyst has low toxicity in actual wastewater. Combining with immobilization technology, not only does it have little impact on the organisms in the wastewater, but it is easy to recycle after degradation. In terms of new water disinfection technology, bacterial experiments in natural waters proved that 2E2SBOC has a potential disinfection system, which promotes the exposure of more active sites during degradation. This effective project offers a novel perspective for the development and application of rare-earth-doped photocatalysts.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.