Abstract

Estrogen receptors α and β (ERα and ERβ) serve key functions in bone development and maintenance, and in the metabolism of bone mineral. ERβ and ERα form heterodimers, and ERβ negatively regulates the transactivation of ERα. ERβ also inhibits recruitment of ERα to the estrogen-responsive promoters. However, the relationship of ERα and ERβ in the regulation of osteoblast viability and differentiation remains unclear. The present study aimed to investigate whether ERβ plays a role in balancing ERα activity in osteoblast cells. Downregulation of ERα by short hairpin RNA (shRNA) was found to significantly increase cell cycle arrest at G1 phase (P<0.01). In addition, this effect was found to be significantly enhanced by downregulation of ERβ (P<0.05). Inversely, ERα-knocked down osteoblasts were treated with ERβ agonist 2,3-bis(4-hydroxyphenyl)-propionitrile (DPN) to activate ERβ. It was found that activation of ERβ significantly rescued the arrest of cell cycle induced by the downregulation of ERα (P<0.05). Furthermore, downregulation of ERα was found to significantly inhibit cell viability (P<0.01), and knockdown of ERβ was found to have a significant synergic effect with ERα downregulation on the inhibition of cell viability (P<0.01). Treatment with ERβ agonist DPN significantly rescued the effects of downregulation of ERα on cell viability (P<0.01). It was also demonstrated that the synergic effects of ERα and ERβ deletion was via upregulation of SOST gene expression, and the subsequent inhibition of OPG and Runx2 gene expression. Thus, ERβ may serve a function in balancing osteoblast viability and differentiation induced by ERα.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.