Abstract

In this paper, an equivalent circuit model for a frequency-selective surface (FSS) embedded in a thick plasma layer is introduced. The plasma layer is a lossy and dispersive medium, and therefore, the equivalent model is not purely imaginary and consists of resistive elements as well as inductance and capacitance elements. First, a square patch FSS is simulated in a wide frequency range from 1 to 25 GHz by a full-wave electromagnetic software, and then all the circuit elements are calculated by genetic algorithm optimization to achieve reflection coefficient similar to the one obtained by simulation. It is shown that this model can mimic the simulated behavior with good approximation. Then values of different elements of the model through practical variations of cold plasma parameters are plotted, and the effects of electron density and collision frequency are investigated on circuit elements.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.