Abstract

In this paper, the electromagnetic shielding effectiveness results of the plain weave composite fabric and the analytical solution of metal mesh were investigated. The composite fabric made of cotton yarns twisted with 50 µm copper filaments was used in the experiment. As the fabric was weaved and stretched, it had square shaped apertures which had length of 1.2 mm. The electromagnetic shielding effectiveness of these fabrics was measured in the frequency range of 1.7–2.6 GHz via WR430 waveguide system. In order to model the shielding results of the aforementioned fabric, an analytical solution which facilitates to calculate shielding effectiveness of metal mesh, was taken into consideration. Due to the physical similarity between the fabric geometry and metal mesh structure, the values of fabric characteristics were substituted in analytical solution. A statistical approach showed that the measured SE results of plain weave composite fabric fitted in the analytical solution for metal mesh in 1.82–2.6 GHz frequency range with strength of 30–36 dB. Thus, depending on desired shielding efficiency the physical texture of shielding fabric can be determined analytically.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.