Abstract
Resonance integrals for lattices of annular rod absorbers can be accurately determined by ordinary equivalence relation procedures. This is demonstrated for water lattices of annular uranium rods whose inner cylindrical zone is either a void or water filled. The equivalence cross section, needed to enable the use of tabulated homogeneous integrals, is given by a formula recently developed. There are three parameters in the formula that need estimation: a Dancoff factor for the lattice, the probability of neutrons entering the inner rod zone to collide there, and a Bell factor. Ways and means to estimate these parameters are discussed and demonstrated. The interpolation of resonance integrals from entries in existing tables of homogeneous integrals is performed with an accurate technique. Results of the equivalence-based calculations are compared with results by the integral transport RABBLE code.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.