Abstract
In a recent work, Bombin, Duclos-Cianci, and Poulin showed that every local translationally invariant 2D topological stabilizer code is locally equivalent to a finite number of copies of Kitaev's toric code. For 2D color codes, Delfosse relaxed the constraint on translation invariance and mapped a 2D color code onto three surface codes. In this paper, we propose an alternate map based on linear algebra. We show that any 2D color code can be mapped onto exactly two copies of a related surface code. The surface code in our map is induced by the color code and easily derived from the color code. Furthermore, our map does not require any ancilla qubits for the surface codes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.