Abstract

The pressure balance on the surface of a charged liquid drop moving along a uniform electrostatic field is analyzed. The liquid is assumed to be nonviscous and incompressible. In the approximation linear in deformation amplitude, the equilibrium shape of the drop as a function of the charge, field strength, and velocity of travel can be both a prolate and an oblate spheroid. Critical conditions for the surface instability of such a drop are obtained analytically in the form of a relationship between the charge, field strength, and velocity of travel. An instability criterion is found by extrapolating to large Reynolds numbers. This makes it possible to fit the earlier model of a corona-initiated lightning in the vicinity of large charged water drops or hailstones to the charges of the drops, field strengths, and velocities of travel (relative to the medium) typical of thunderclouds.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.