Abstract

For applications of realistic size, both the discrete and continuous versions of the equilibrium network design problem are too computationally intensive to be solved exactly with the algorithms proposed to date. This intractibility owes to Braess' paradox which makes it necessary to constrain the flow pattern to be a noncooperative Nash or user equilibrium. This paper suggests a new heuristic for finding an approximate solution to the continuous equilibrium network design problem. Numerical tests are reported which indicate that, for networks with significant congestion, the heuristic is markedly more efficient than the Hooke-Jeeves algorithm which has been employed previously. The efficiency of the heuristic results from decomposition of the original problem into a set of interacting optimization subproblems. This decomposition is such that, at each iteration of the algorithm, only one user equilibrium needs to be calculated in order to update the improvement variables of all arcs of the network. This contrasts sharply with the Hooke-Jeeves algorithm which can require that a new user equilibrium be calculated each time an individual arc improvement variable is updated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.