Abstract
AbstractChlorine oxyanions have various applications, such as bleaching and oxidizers in rocket fuels. However, their high solubility in water and long environmental lifetimes have led to ecological concerns, especially regarding drinking water quality. This study focuses on the conversion of chlorite to chlorine dioxide, which is of significant interest as it exhibits superior antimicrobial activity and generates less harmful byproducts for water treatment. Two nonheme iron(II) complexes capable of producing chlorine dioxide from chlorite at room temperature and pH 5.0 are presented. These complexes oxidize chlorite through high‐valent iron (IV)‐oxo intermediates formed in‐situ. The study establishes second‐order rate constants for chlorite oxidation and investigates the effects and mechanisms involved by substituting a methyl group in the secondary coordination sphere of the FeIV(O)(N4Py) system. By employing kinetic analysis and spectroscopic investigations, the crucial elements for the reaction mechanism in chlorite oxidation are identified. These findings pave the way for future advancements in this field.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.