Abstract

When testing lenses with Hartmann methods, a wave aberration function W is typically estimated. This W represents the deviations of the wavefront surface w with respect to an ideal wavefront E. In this test, the distance r from the observation screen to the second lens surface is considered, and, as in the case of W, by considering paraxial approximations, two estimations of w can be directly constructed from Hartmann test data without calculating W. We have compared these two estimations by taking into account small r values; a possible and suitable condition to measure some relatively high-power lenses. The importance of estimating w can be useful for improving some optical measurements as power map reconstructions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.