Abstract

We deduce equations of motion of quantized vortices in rotating Bose–Einstein condensates in two cases, namely, for a homogeneous condensate in a rigid rotating cylinder and for an inhomogeneous condensate in a rotating magnetic trap in the Thomas–Fermi approximation. The Schrodinger equations for both media are reduced to a convenient dimensionless form. By the method of expansion in a small parameter, we obtain two asymptotic solutions in different space scales. The comparison of the principal terms of these solutions yields the required equations. The equations of motion of the vortices in the homogeneous condensate are reduced to the well-known equations of vortices in the ideal liquid. The inhomogeneity of the medium results in the appearance of additional terms. We deduce the equations of motion of the vortices in the most general case: for any number of vortices, for vessels of different shapes, and both in the presence and in the absence of rotation. It is shown that, in the partial case of motion of a single vortex, the corresponding equations are reduced to the well-known equations of precession of the vortex. We present the plots of motion of several vortices for various initial data.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.