Abstract

A vector integral equation describing heat distribution within the body has been derived. The factors considered are heat conduction, forced convection via the circulatory system, environmental exchange, metabolic heat production, and change in heat content. The vector partial differential equation and alternative forms incorporating boundary conditions were also developed. A difference equation based on a first-order approximation to the fundamental equations was derived to form the basis of a model for heat distribution within the body. It has been shown that factors involving conduction and convection must be considered independently unless the temperature of the blood flowing from a region of the body is equal to the average temperature of the tissue in that region. If this relation between tissue and blood temperature does exist, only a single temperature from each eleeent is needed to describe the heat distribution. In this latter case, models which ascribe all heat transfer to “equivalent” conduction or to convection can give valid predictions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.