Abstract
In order to overcome the nonlinearity of Mises criterion, a new linear yield criterion with a dodecagon shape of the same perimeter as Mises criterion was derived by means of geometrical analysis. Its specific plastic work rate expressed as a linear function of the yield stress, the maximum and minimum strains was also deduced and compared with that of Mises criterion. The physical meaning of the proposed yield criterion is that yielding of materials begins when the shear yield stress τs reaches the magnitude of 0.594σs. By introducing the Lode parameter, validation of evolution expressions of the proposed yield criterion with those based on Tresca, Mises and TSS criteria as well as available classical yield experimental results of various metals shows that the present results intersect with Mises results and coincide well with experimental data. Moreover, further application to the limit analysis of circle plate as an example is performed to demonstrate the effectiveness of the proposed yield criterion, and the subsequent comparison of limit loads with the Tresca analytical solutions and Mises numerical results shows that the present results are higher than the Tresca analytical results, and are in good agreement with the Mises numerical results.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.