Abstract

A holder for a quartz resonator with an adjustable air-gap excitation electrode (range: 0–300 μm) is described, able to be used in an EQCM that is provided either with a metallic-film or a glued metallic-foil working electrode. An AT-cut plano-convex quartz crystal of 1.8 MHz and Pt-foil of 3 μm thickness were used. Both the frequency shift and the quality factor of the quartz resonator were recorded during the calibration tests. Calibration data by electro-deposition of copper (in 0.1 M CuSO 4-solution) and oxygen (in both acid and basic solutions) on Pt-foil and Au-film electrodes, and at various air-gap widths, are presented. The frequency shifts for the Cu-calibration fit the Sauerbrey model at any air-gap width of the excitation electrode, while those for O-calibration fit only at relatively large values of the air-gap, >75 μm. At small air-gap widths (<25 μm), the O-calibration data deviate from the Sauerbrey model and yield an enhanced mass-sensitivity, up to 15 times higher. The different effects the air-gap width has on the response of the quartz resonator, as to the respective mass-variation of copper and oxygen layers deposited onto its surface, are ascribed to the difference in their features. Oxygen appears as a weakly bound, mono-atomic layer, while copper forms a rigid, strongly bound bulk layer.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.