Abstract

The systematic study of iron-doped MFI zeolite and MFI silicalite by X- and Q-band EPR spectroscopy is reported in this paper. Both samples, which contain Fe(III) ions in the MFI lattice, underwent three sequential treatments—calcination, steaming, and washing with sodium dithionite solution—which are needed to make the catalyst active by extracting iron ions from the lattice. EPR spectra could be simulated by assuming a broad distribution of spin-spin (zero-field) coupling parameters. The simulation parameters depend on sample history and reproduce the selective intensity changes that are observed in X-band spectra after each treatment. In particular, the distribution width decreases by calcining and steaming samples and then it increases by treating with aqueous dithionite solution. This is in agreement with the view that iron ions are extracted from the framework by calcining and by steaming and may form relatively large iron oxide particles which become smaller after the chemical treatment. We have also studied the temperature dependence of the EPR spectra. The most interesting results are from the steamed samples. Their behavior has been interpreted as due to the presence of superparamagnetic single domain particles of iron oxide. This agrees with the view that iron oxide particles form during steaming.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.