Abstract

Marine organisms, especially marine algae, are extremely rich in a diversity of novel oxylipin structures. Many of these oxylipins contain functionalities and rings of a type and location unknown in mammalian systems. In this perspective reviewing marine oxylipins, a proposal is formulated for the central intermediacy of an epoxy allylic carbocation in the biogenesis of these diverse structures. This proposal is strengthened by the relatively large number of examples which are consistent with this type of mechanistic transformation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.