Abstract
Epithelial sodium channels (ENaCs) are assembled in the endoplasmic reticulum (ER) from alpha, beta, and gamma subunits, each with two transmembrane domains, a large extracellular loop, and cytoplasmic amino and carboxyl termini. ENaC maturation involves transit through the Golgi complex where Asn-linked glycans are processed to complex type and the channel is activated by furin-dependent cleavage of the alpha and gamma subunits. To identify signals in ENaC for ER retention/retrieval or ER exit/release, chimera were prepared with the interleukin alpha subunit (Tac) and each of the three cytoplasmic carboxyl termini of mouse ENaC (Tac-Ct) or with gamma-glutamyltranspeptidase and each of the three cytoplasmic amino termini (Nt-GGT). By monitoring acquisition of endoglycosidase H resistance after metabolic labeling, we found no evidence of ER retention of any chimera when compared with control Tac or GGT, but we did observe enhanced exit of Tac-alphaCt when compared with Tac. ER exit of ENaC was assayed after metabolic labeling by following the appearance of cleaved alpha as cleaved alpha subunit, but not non-cleaved alpha, is endoglycosidase H-resistant. Interestingly ER exit of epitope-tagged and truncated alpha (alphaDelta624-699-V5) with full-length betagamma was similar to wild type alpha (+betagamma), whereas ER exit of ENaC lacking the entire cytoplasmic carboxyl tail of alpha (alphaDelta613-699-V5 +betagamma) was significantly reduced. Subsequent analysis of ER exit for ENaCs with mutations within the intervening sequence (613)HRFRSRYWSPG(623) within the context of the full-length alpha revealed that mutation alphaRSRYW(620) to AAAAA significantly reduced ER exit. These data indicate that ER exit of ENaC is regulated by a signal within the alpha subunit carboxyl cytoplasmic tail.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.