Abstract
ABSTRACTHigh quality SiC and AlN films allow the fabrication of metal/AlN/SiC MIS structures and SiC/AlN heterostructures that require a low lattice mismatch and excellent thermal stability. Epitaxial SiC on AlN/sapphire was grown using hexamethyldisilane (HMDS) by MOVPE. 2HAlN is epitaxially grown on sapphire by MOCVD, and subsequently SiC is deposited on it. The growth of high quality SiC was achieved in a one step process without any nucleation step using dilute hydrogen in argon (12% H2 + Ar) as the carrier gas, which is less explosive than pure H2. The effect of growth temperature and thickness of AlN on the SiC crystal quality and the surface smoothness were studied. All films were analyzed using reflection high energy electron diffraction (RHEED), Nomarski differential interference contrast microscopy (NDIC), X-ray diffraction (XRD), and atomic force microscopy (AFM). Optimum temperature for SiC growth was between 1300°C and 1350°C. At these temperatures, the grown films show strong epitaxial relationship with AlN and very smooth surfaces (RMS ∼ 0.1- 0.75 nm). At temperatures below 1300°C, the film becomes polycrystalline. At 1400°C, the films show highly textured features, observed by XRD. In the RHEED, however, weak rings appear superimposed on the spot pattern, which implies the grown films are polycrystalline but highly textured. In order to evaluate the effect of underlying AlN thickness on the SiC film, layers with various thicknesses (50, 200, 400 nm) have been used at 1350°C. The SiC film on a 50 nm thick AlN layer shows a very smooth surface (RMS ∼ 0.1 nm) compared to the SiC film on a 400 nm (RMS ∼ 0.7 nm) AlN layer. This seems to be caused by the increasing roughness of the underlying AlN, as it becomes thicker. However, all the films show highly epitaxial growth features, which implies that 50 nm is sufficient to relieve the mismatch strain of the underlying AlN/sapphire.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.