Abstract
This work focuses on the synthesis and characterization of gold films grown via galvanic displacement on Ge(111) substrates. The synthetic approach uses galvanic displacement, a type of electroless deposition that takes place in an efficient manner under aqueous, room temperature conditions. Investigations involving X-ray diffraction (XRD) and transmission electron microscopy (TEM) techniques were performed to study the crystallinity and orientation of the resulting gold-on-germanium films. A profound effect of HF(aq) concentration was noted, and although the SEM images did not show significant differences in the resulting gold films, a host of X-ray diffraction studies demonstrated that higher concentrations of HF(aq) led to epitaxial gold-on-germanium, whereas in the absence of HF(aq), lower degrees of order (fiber texture) resulted. Cross-sectional nanobeam diffraction analyses of the Au-Ge interface confirmed the epitaxial nature of the gold-on-germanium film. This epitaxial behavior can be attributed to the simultaneous etching of the germanium oxides, formed during the galvanic displacement process, in the presence of HF. High-resolution TEM analyses showed the coincident site lattice (CSL) interface of gold-on-germanium, which results in a small 3.8% lattice mismatch due to the coincidence of four gold lattices with three of germanium.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.