Abstract

Power spectrum analysis is one of the effective tools for classifying epileptic signals based on electroencephalography (EEG) recordings. However, the conflation of periodic and aperiodic components within the EEG may presents an obstacle to epilepsy detection or prediction. In this paper, we explored the significance of the periodic and aperiodic components of the EEG power spectrum for the detection and prediction of epilepsy respectively. We use a power spectrum density parameterization method to separate the periodic and aperiodic components of the signals, and validate their roles in epilepsy detection and prediction on two public datasets. The average classification accuracy of the periodic and aperiodic components for 10 clinical tasks on the Bonn EEG database were 73.9% and 96.68%, respectively, and increases to 98.88% when combined. For 22 patients on the CHB-MIT Long-term EEG database, the combined features achieve an average detection accuracy of 99.95% and successfully predict all seizures with low false prediction rates. We conclude that both the periodic and aperiodic components of the EEG power spectrum contributed to discriminating different stages of epilepsy, but the aperiodic neural activity played a decisive role in classification. This discovery has significant implications for diagnosing epileptic seizures and providing personalized brain activity information to improve the accuracy and efficiency of epilepsy detection.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.