Abstract
Epigenetic regulations play a central role in governing the embryo development and somatic cell reprogramming. Taking advantage of recent advances in low-input sequencing techniques, researchers have uncovered a comprehensive view of the epigenetic landscape during rapid transcriptome transitions involved in the cell fate commitment. The well-organized epigenetic reprogramming also highlights the essential roles of specific epigenetic regulators to support efficient regulation of transcription activity and chromatin remodeling. This review briefly introduces the recent progress in the molecular dynamics and regulation mechanisms implicated in mouse early embryo development and somatic cell reprograming, as well as the multi-omics regulatory mechanisms of totipotency mediated by several key factors, which provide valuable resources for further investigations on the complicated regulatory network in essential biological events.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.