Abstract

Investigation into the hallmarks of aging point to the existence of shared mechanisms that underlie the biological aging process. While there is a general consensus that hallmarks of aging rarely occur in isolation, little is known in regards to their overlapping networks or how interactions contribute to manifestations at the clinical level. Here, we examine whether shared epigenetic alterations—one of the proposed hallmark of aging—underlies diverse conditions characterized by other hallmarks, including cellular senescence, loss of proteostasis, genomic instability, mitochondrial dysfunction, and inflammation. Using weighted network analysis, we identified consistent overlaps in the methylation profiles across the different traits. For instance, epigenetic modules that were distinct in senescence were also affected in progeroid syndromes (Hutchinson-Gilford Progeria Syndrome and Werner’s Syndrome) and smokers. These CpGs tended to be located in CpG islands, which are notable for their strong association with transcriptional regulation. Overall, our results suggest that epigenetic alterations intersect with various hallmarks of aging. In moving forward, incorporation of this understanding may lead to the development of biomarkers that better capture the biological (rather than chronological) aging process.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.