Abstract

The androgen receptor (AR) is a ligand-activated transcription factor that interacts with coregulatory proteins during androgen-dependent gene regulation. Melanoma antigen gene protein 11 (MAGE-11) is an AR coregulator that specifically binds the AR NH(2)-terminal FXXLF motif and modulates the AR NH(2)- and carboxyl-terminal N/C interaction to increase AR transcriptional activity. Here we demonstrate that epidermal growth factor (EGF) signaling increases androgen-dependent AR transcriptional activity through the posttranslational modification of MAGE-11. EGF in the presence of dihydrotestosterone stabilizes the AR-MAGE complex through the site-specific phosphorylation of MAGE-11 at Thr-360 and ubiquitinylation at Lys-240 and Lys-245. The time-dependent EGF-induced increase in AR transcriptional activity by MAGE-11 is mediated through AR activation functions 1 and 2 in association with the increased turnover of AR and MAGE-11. The results reveal a dynamic mechanism whereby growth factor signaling increases AR transcriptional activity through the covalent modification of an AR-specific coregulatory protein. Sequence conservation of the MAGE-11 phosphorylation and ubiquitinylation sites throughout the MAGE gene family suggests common regulatory mechanisms for this group of cancer-testis antigens.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.