Abstract

We study the spread of susceptible-infected-recovered (SIR) infectious diseases where an individual's infectiousness and probability of recovery depend on his/her “age” of infection. We focus first on early outbreak stages when stochastic effects dominate and show that epidemics tend to happen faster than deterministic calculations predict. If an outbreak is sufficiently large, stochastic effects are negligible and we modify the standard ordinary differential equation (ODE) model to accommodate age-of-infection effects. We avoid the use of partial differential equations which typically appear in related models. We introduce a “memoryless” ODE system which approximates the true solutions. Finally, we analyze the transition from the stochastic to the deterministic phase.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.