Abstract

Social interaction, which is intricate and time-varying, has emerged as a pivotal consideration in epidemic spreading. In this paper, we devise a UAU–SIS model for simulating awareness diffusion and epidemic spreading on temporal multiplex networks. Drawing inspiration from individuals’ self-protection behaviors, a novel adaptive update mechanism is developed. To provide a more precise representation of the collective social interactions encompassing individuals, we introduce the higher-order network structure encompassing temporal variability. Building upon the established framework of the microscopic Markov chain approach (MMCA) for static networks, we extend its applicability to the condition of temporal networks and derive the threshold within the coupled dynamics. Our extensive simulations illuminate the dual role of awareness in epidemic mitigation. Beyond solely diminishing infection probabilities through self-protective measures, individual awareness additionally facilitates to change the network structure to separate them from the infected. By elucidating these fundamental characteristics, our research contributes to advancing more effective strategies for epidemic mitigation and containment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.