Abstract

BackgroundThe drivers of species co-existence in local communities are especially enigmatic for assemblages of morphologically cryptic species. Here we characterize the colonization dynamics and abundance of nine species of Caenorhabditis nematodes in neotropical French Guiana, the most speciose known assemblage of this genus, with resource use overlap and notoriously similar external morphology despite deep genomic divergence.MethodsTo characterize the dynamics and specificity of colonization and exploitation of ephemeral resource patches, we conducted manipulative field experiments and the largest sampling effort to date for Caenorhabditis outside of Europe. This effort provides the first in-depth quantitative analysis of substrate specificity for Caenorhabditis in natural, unperturbed habitats.ResultsWe amassed a total of 626 strain isolates from nine species of Caenorhabditis among 2865 substrate samples. With the two new species described here (C. astrocarya and C. dolens), we estimate that our sampling procedures will discover few additional species of these microbivorous animals in this tropical rainforest system. We demonstrate experimentally that the two most prevalent species (C. nouraguensis and C. tropicalis) rapidly colonize fresh resource patches, whereas at least one rarer species shows specialist micro-habitat fidelity.ConclusionDespite the potential to colonize rapidly, these ephemeral patchy resources of rotting fruits and flowers are likely to often remain uncolonized by Caenorhabditis prior to their complete decay, implying dispersal-limited resource exploitation. We hypothesize that a combination of rapid colonization, high ephemerality of resource patches, and species heterogeneity in degree of specialization on micro-habitats and life histories enables a dynamic co-existence of so many morphologically cryptic species of Caenorhabditis.

Highlights

  • The drivers of species co-existence in local communities are especially enigmatic for assemblages of morphologically cryptic species

  • Integrating the sampling and species discovery efforts in this study with a previous collection leads to a species richness upper 95% confidence interval bound of 9.88 Caenorhabditis in French Guiana (Chao2 estimator; Fig. 2b)

  • Four species were most widespread by being present at numerous inland and coastal localities (C. nouraguensis, C. tropicalis, C. briggsae, and C. brenneri), with the gonochoristic C. nouraguensis and the androdioecious C. tropicalis being most abundant (Fig. 2a)

Read more

Summary

Introduction

The drivers of species co-existence in local communities are especially enigmatic for assemblages of morphologically cryptic species. We characterize the colonization dynamics and abundance of nine species of Caenorhabditis nematodes in neotropical French Guiana, the most speciose known assemblage of this genus, with resource use overlap and notoriously similar external morphology despite deep genomic divergence. The role of ‘priority effects’ in the order of species colonization plays a critical role in determining whether or not multiple species can coexist within a patch and across the landscape. How these factors come together is especially intriguing for speciesrich groups with similar ecological roles and strongly overlapping resource use. It becomes crucial to characterize the species community composition and resource colonization capabilities of those species in natural systems.

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.