Enzymes DNA Repair in Skin Photoprotection: Strategies Counteracting Skin Cancer Development and Photoaging Strategies
Ultraviolet radiation (UVR) is a major contributor to skin aging and carcinogenesis, primarily through the induction of DNA damage. While conventional sunscreens provide passive protection by blocking UVR, active photoprotection using DNA repair enzymes offers a strategy to reverse UV-induced DNA lesions at the molecular level. Enzymes such as photolyase, T4 endonuclease V, and 8-oxoguanine glycosylase address distinct types of DNA damage through light-dependent and -independent mechanisms, complementing the skin’s endogenous repair systems. Advances in nanocarrier technologies and encapsulation methods have improved the stability and delivery of these enzymes in topical formulations. Emerging evidence from clinical studies indicates their potential in reducing actinic keratoses, pigmentation disorders, and photoaging signs, although challenges in regulatory approval, long-term efficacy validation, and formulation optimization remain. This review provides a comprehensive synthesis of the mechanistic, clinical, and formulation aspects of enzyme-based photoprotection, outlines regulatory and ethical considerations, and highlights future directions, including CRISPR-based repair and personalized photoprotection strategies, establishing enzyme-assisted sunscreens as a next-generation approach to comprehensive skin care.
9
- 10.1111/phpp.12967
- Apr 14, 2024
- Photodermatology, photoimmunology & photomedicine
21
- 10.3390/ijms23094653
- Apr 22, 2022
- International Journal of Molecular Sciences
- 10.1021/jacs.4c18116
- Apr 29, 2025
- Journal of the American Chemical Society
168
- 10.1046/j.1523-1747.2000.00839.x
- Jan 1, 2000
- Journal of Investigative Dermatology
- 10.3390/ijms26062381
- Mar 7, 2025
- International journal of molecular sciences
14
- 10.3390/catal13040745
- Apr 13, 2023
- Catalysts
16
- 10.1007/s13671-020-00307-0
- Jul 13, 2020
- Current Dermatology Reports
- 10.1016/j.jdin.2024.11.011
- Mar 13, 2025
- JAAD International
32
- 10.3390/cosmetics10040101
- Jul 12, 2023
- Cosmetics
539
- 10.1038/s41392-021-00648-7
- Jul 9, 2021
- Signal Transduction and Targeted Therapy
- Research Article
20
- 10.1046/j.1523-1747.2002.19638.x
- Dec 1, 2002
- Journal of Investigative Dermatology Symposium Proceedings
20 years after--milestones in molecular photobiology.
- Research Article
38
- 10.1046/j.1365-2133.1997.19362051.x
- Nov 1, 1997
- British Journal of Dermatology
There is increasing concern about the adverse health effects associated with the use of sunbeds, particularly with respect to skin photocarcinogenesis. The induction of mutagenic DNA damage is a prerequisite for the development of skin tumours, and it is well established that direct types of damage such as cyclobutane pyrimidine dimers (CPDs) give rise to mutations in tumour suppressor genes and oncogenes. In addition, ultraviolet radiation may induce indirect types of DNA damage, including oxidative products, which are also potentially mutagenic. By using specific DNA repair enzymes (T4 endonuclease V and endonuclease III) and the comet assay we have been able to detect the induction of CPDs, oxidized or hydrated pyrimidine bases and single-strand breaks in cultured human fibroblasts (MRC-5) after exposure for between 15 s and 20 min on two different commercial sunbeds containing Philips 'Performance' 100W-R or Philips TL80W/10R lamps. The ratio of endonuclease III to T4 endonuclease V sensitive sites varied substantially between the two lamps and was 3.3% and 18%, respectively. The sunbed containing the 'Performance' 100W-R lamps was as potent at inducing CPDs as was natural sunlight in fine weather. These results establish that commercial tanning lamps produce the types of DNA damage associated with photocarcinogenesis in human cells, and complement epidemiological evidence indicating the potential risk of using sunbeds.
- Research Article
5
- 10.1016/j.jbc.2021.100511
- Jan 1, 2021
- The Journal of Biological Chemistry
β-TrCP1 facilitates cell cycle checkpoint activation, DNA repair, and cell survival through ablation of β-TrCP2 in response to genotoxic stress
- Research Article
74
- 10.1039/c3pp00004d
- Aug 1, 2013
- Photochemical & Photobiological Sciences
Solar ultraviolet (UV) radiation is widely known as an environmental genotoxic agent that affects ecosystems and the human population, generating concerns and motivating worldwide scientific efforts to better understand the role of sunlight in the induction of DNA damage, cell death, mutagenesis, and ultimately, carcinogenesis. In this review, general aspects of UV radiation at the Earth's surface are reported, considering measurements by physical and biological sensors that monitor solar UV radiation under different environmental conditions. The formation of DNA photoproducts and other types of DNA damage by different UV wavelengths are compared with the present information on their roles in inducing biological effects. Moreover, the use of DNA-based biological dosimeters is presented as a feasible molecular and cellular tool that is focused on the evaluation of DNA lesions induced by natural sunlight. Clearly, direct environmental measurements demonstrate the biological impact of sunlight in different locations worldwide and reveal how this affects the DNA damage profile at different latitudes. These tools are also valuable for the quantification of photoprotection provided by commercial sunscreens against the induction of DNA damage and cell death, employing DNA repair-deficient cells that are hypersensitive to sunlight. Collectively, the data demonstrate the applicability of DNA-based biosensors as alternative, complementary, and reliable methods for registering variations in the genotoxic impact of solar UV radiation and for determining the level of photoprotection sunscreens provided at the level of DNA damage and cell death.
- Research Article
82
- 10.15252/embj.201796717
- Aug 16, 2017
- The EMBO Journal
The development of many sporadic cancers is directly initiated by carcinogen exposure. Carcinogens induce malignancies by creating DNA lesions (i.e., adducts) that can result in mutations if left unrepaired. Despite this knowledge, there has been remarkably little investigation into the regulation of susceptibility to acquire DNA lesions. In this study, we present the first quantitative human genome-wide map of DNA lesions induced by ultraviolet (UV) radiation, the ubiquitous carcinogen in sunlight that causes skin cancer. Remarkably, the pattern of carcinogen susceptibility across the genome of primary cells significantly reflects mutation frequency in malignant melanoma. Surprisingly, DNase-accessible euchromatin is protected from UV, while lamina-associated heterochromatin at the nuclear periphery is vulnerable. Many cancer driver genes have an intrinsic increase in carcinogen susceptibility, including the BRAF oncogene that has the highest mutation frequency in melanoma. These findings provide a genome-wide snapshot of DNA injuries at the earliest stage of carcinogenesis. Furthermore, they identify carcinogen susceptibility as an origin of genome instability that is regulated by nuclear architecture and mirrors mutagenesis in cancer.
- Research Article
54
- 10.1074/jbc.m505600200
- Sep 1, 2005
- Journal of Biological Chemistry
The mammalian non-histone "high mobility group" A (HMGA) proteins are the primary nuclear proteins that bind to the minor groove of AT-rich DNA. They may, therefore, influence the formation and/or repair of DNA lesions that occur in AT-rich DNA, such as cyclobutane pyrimidine dimers (CPDs) induced by UV radiation. Employing both stably transfected lines of human MCF7 cells containing tetracycline-regulated HMGA1 transgenes and primary Hs578T tumor cells, which naturally overexpress HMGA1 proteins, we have shown that cells overexpressing HMGA1a protein exhibit increased UV sensitivity. Moreover, we demonstrated that knockdown of intracellular HMGA1 concentrations via two independent methods abrogated this sensitivity. Most significantly, we observed that HMGA1a overexpression inhibited global genomic nucleotide excision repair of UV-induced CPD lesions in MCF-7 cells. Consistent with these findings in intact cells, DNA repair experiments employing Xenopus oocyte nuclear extracts and lesion-containing DNA substrates demonstrated that binding of HMGA1a markedly inhibits removal of CPDs in vitro. Furthermore, UV "photo-foot-printing" demonstrated that CPD formation within a long run of Ts (T(18)-tract) in a DNA substrate changes significantly when HMGA1 is bound prior to UV irradiation. Together, these results suggest that HMGA1 directly influences both the formation and repair of UV-induced DNA lesions in intact cells. These findings have important implications for the role that HMGA protein overexpression might play in the accumulation of mutations and genomic instabilities associated with many types of human cancers.
- Research Article
6
- 10.3389/fmars.2022.958197
- Aug 11, 2022
- Frontiers in Marine Science
Marine plastic pollution is one of the most concerning worldwide environmental issues, and research is day by day demonstrating its adverse effects on marine ecosystems. Nevertheless, little is still known about the toxic potential on marine fauna of chemical additives released by plastic debris. Here we investigated the cyto- and genotoxicity of the most used plasticizer in plastic production, di(2-ethylhexyl)phthalate (DEHP), on a skin cell line (TT) derived from the bottlenose dolphin (Tursiops truncatus), a species particularly exposed to the accumulation of this lipophilic pollutant, being a coastal top predator rich in fatty subcutaneous tissues. Dolphin cell cultures were exposed to increasing DEHP doses (0.01–5 mM) to evaluate effects on cell viability, cell death, and induction of DNA damage. On the hypothesis that bottlenose dolphin cells show greater resistance to DEHP toxicity than terrestrial mammals, as already shown for other pollutants, the same parameters were analyzed on exposed Chinese hamster ovary (CHO) cell lines. Both MTT and Trypan Blue assays showed no significant decrease in dolphin’s cell viability after 24-h DEHP exposure. No induction of primary DNA damage was detected by the comet assay, whereas the cytokinesis-block micronucleus assay revealed significant micronuclei induction and inhibition of cell proliferation starting from the lowest DEHP doses. DEHP had similar but sharper and significant effects on cell viability in CHO cells, also causing a much greater induction of necrosis than that recorded on dolphin cells. For both cell lines, the lack of induction of primary DNA damage (i.e., strand breaks) together with the increase of micronuclei yield after DEHP treatment suggests an aneugenic effect of the phthalate, that is, the loss of entire chromosomes during cell division. Overall, the potential chromosome loss detected could constitute a threat for species of marine mammals constantly exposed to plastic marine litter.
- Research Article
79
- 10.1093/carcin/22.12.1979
- Dec 1, 2001
- Carcinogenesis
Accumulating evidence suggests that HO-1 plays an important role in cellular protection against oxidant-mediated cell injury. Our previous studies on hyperbaric oxygen (HBO; i.e. exposure to pure oxygen under high ambient pressure) indicated clearly increased levels of HO-1 in lymphocytes of volunteers 24 h after HBO treatment (1 h at 1.5 bar). Experiments with the comet assay (alkaline single cell gel electrophoresis) revealed that the same cells were almost completely protected against the induction of DNA damage by a repeated exposure or in vitro treatment with H(2)O(2) 24 h after the first HBO. In order to further investigate the role of HO-1 in HBO-induced adaptive response, we now performed experiments with isolated human lymphocytes exposed to HBO in vitro (2 h at 3 bar). Our results show that also under cell culture conditions, lymphocytes exhibit an adaptive protection similar to that observed in our previous work with healthy human subjects. The time-course of HO-1 induction proceeds in parallel to the development of an adaptive protection against the induction of oxidative DNA damage. A comparable protection was not seen in V79 cells, indicating a specific difference between the two investigated cell systems. Treatment with the specific HO-1 inhibitor tin-mesoporphyrin IX (SnMP) led to a complete abrogation of HBO-induced adaptive protection in human lymphocytes. Our results indicate a functional involvement of HO-1 in the adaptive protection of human lymphocytes against the induction of oxidative DNA damage. The exact mechanism by which HO-1 contributes to an adaptive response remains to be elucidated.
- Research Article
92
- 10.1093/humrep/deu204
- Aug 19, 2014
- Human Reproduction
What are the mechanisms by which the preparation of spermatozoa on discontinuous density gradients leads to an increase in oxidative DNA damage? The colloidal silicon solutions that are commonly used to prepare human spermatozoa for assisted reproduction technology (ART) purposes contain metals in concentrations that promote free radical-mediated DNA damage. Sporadic reports have already appeared indicating that the use of colloidal silicon-based discontinuous density gradients for sperm preparation is occasionally associated with the induction of oxidative DNA damage. The cause of this damage is however unknown. This study comprised a series of experiments designed to: (i) confirm the induction of oxidative DNA damage in spermatozoa prepared on commercially available colloidal silicon gradients, (ii) compare the levels of damage observed with alterative sperm preparation techniques including an electrophoretic approach and (iii) determine the cause of the oxidative DNA damage and develop strategies for its prevention. The semen samples employed for this analysis involved a cohort of >50 unselected donors and at least three independent samples were used for each component of the analysis. The setting was a University biomedical science laboratory. The major techniques employed were: (i) flow cytometry to study reactive oxygen species generation, lipid peroxidation and DNA damage, (ii) computer-aided sperm analysis to measure sperm movement and (iii) inductively coupled mass spectrometry to determine the elemental composition of sperm preparation media. Oxidative DNA damage is induced in spermatozoa prepared on PureSperm(®) discontinuous colloidal silicon gradients (P < 0.001 versus repeated centrifugation) because this medium contains metals, particularly Fe, Al and Cu, which are known to promote free radical generation in the immediate vicinity of DNA. This damage can be significantly accentuated by reducing agents, such as ascorbate (P < 0.001) and inhibited by selective chelation (P < 0.001). This problem is not confined to PureSperm(®); analysis of additional commercial sperm preparation media revealed that metal contamination is a relatively constant feature of such products. While the presence of metals, particularly transition metals, may exacerbate the levels of oxidative DNA damage seen in human spermatozoa, the significance of such damage has not yet been tested in suitably powered clinical trials. The results explain why the preparation of spermatozoa on discontinuous colloidal silicon gradients can result in oxidative DNA damage. The results are of immediate relevance to the development of safe, effective protocols for the preparation of spermatozoa for ART purposes. The study was funded by the Australian Health and Medical Research Council. One of the authors (R.J.A.) has had a consultantship with a biotechnology company, NuSep, interested in the development of electrophoretic methods of sperm preparation. He has no current financial interest in this area. None of the other authors have a conflict of interest to declare.
- Research Article
50
- 10.1046/j.1365-2133.1999.02899.x
- Jun 1, 1999
- British Journal of Dermatology
Tanning lamps, emitting predominantly ultraviolet (UV) A, are used widely throughout the U.K. and other countries, but little is known about the long-term risks associated with their use, especially with respect to skin cancer. We have exposed normal human epidermal keratinocytes to a commercial tanning lamp and used the comet assay in association with DNA repair enzymes T4 endonuclease V and endonuclease III to investigate the relative yields of directly formed cyclobutane pyrimidine dimers (CPDs) and indirectly formed types of oxidative DNA damage. To put the risk of using tanning lamps into perspective, the sunbed used in this study (five Philips Performance 80W-R UVA tubes at a distance of 35 cm) was found to be approximately 0.7 times as potent at inducing CPDs as U.K. natural sunlight around noon on a fine summer day. This compares with a relative risk for CPD induction and erythema of 0.8 and 0.7 times, respectively, calculated from the relevant action spectra of tanning lamps and British noontime sunlight. To determine the relative contribution of UVB and UVA to the induction of CPDs and oxidative DNA damage, we modified the spectral output of the tanning lamps with a series of Schott WG UVB filters. The induction of CPDs was more dependent on the UVB component of the sunbed than oxidative types of damage. Schott WG UVB filters with 50% transmission at 305 nm reduced the yield of T4 endonuclease V sites by 42% while there was only a 17% decrease in the yield of endonuclease III sites. CPD induction was not completely abolished after irradiation through WG335 and WG345 nm filters despite there being no detectable UVB. From these data, it was estimated that, although the tanning lamps emitted only 0.8% of their total output in the UVB range, these wavelengths were responsible for the induction of over 75% of CPDs and 50% of the oxidative damage to DNA.
- Research Article
100
- 10.1093/carcin/21.10.1795
- Oct 1, 2000
- Carcinogenesis
Hyperbaric oxygen (HBO) treatment of human subjects (i.e. exposure to 100% oxygen at a pressure of 2.5 ATA for a total period of 3 x 20 min) caused clear and reproducible DNA damage in lymphocytes, as detected with the comet assay (single cell gel electrophoresis). Induction of DNA damage was found only after the first HBO exposure and not after further treatments of the same individuals. Furthermore, blood taken 24 h after HBO treatment was significantly protected against the induction of DNA damage by hydrogen peroxide (H(2)O(2)) in vitro, indicating that adaptation occurred due to induction of antioxidant defenses. The cells were not significantly protected against the genotoxic effects of gamma-irradiation, suggesting increased scavenging of reactive oxygen species distant from nuclear DNA or an inducible change in the levels of free transition metals. We now demonstrate increased levels of heme oxygenase-1 (HO-1) in lymphocytes 24 h after HBO treatment of volunteers. Under the same conditions, superoxide dismutase, catalase and the DNA repair enzymes apurinic endonuclease and DNA polymerase beta were not enhanced in expression. We also show that protection against the induction of DNA damage by H(2)O(2) in lymphocytes even occurs with a shortened HBO treatment which did not induce significant DNA damage by itself. Our results suggest that increased sequestration of iron as a consequence of induced HO-1 might be involved in the adaptive protection after HBO treatment and that the induction of DNA damage is not the trigger for adaptive protection.
- Research Article
103
- 10.1038/jid.1995.14
- Jul 1, 1995
- Journal of Investigative Dermatology
Involvement of Cytokines, DNA Damage, and Reactive Oxygen Intermediates in Ultraviolet Radiation-Induced Modulation of Intercellular Adhesion Molecule-1 Expression
- Research Article
103
- 10.1111/1523-1747.ep12316095
- Jul 1, 1995
- Journal of Investigative Dermatology
Involvement of cytokines, DNA damage, and reactive oxygen intermediates in ultraviolet radiation-induced modulation of intercellular adhesion molecule-1 expression.
- Abstract
- 10.1182/blood.v116.21.3003.3003
- Nov 19, 2010
- Blood
Zalypsis Has Synergistic Effect When Combined with Bortezomib + Dexamethasone through Caspase Dependent and Mainly Independent Mechanisms and through A Potent Induction of DNA Damage
- Research Article
12
- 10.1016/0167-8817(85)90010-0
- Sep 1, 1985
- Mutation Research DNA Repair Reports
Characterization of DNA repair in a mutant cell line derived from ICR 2A frog cells that is hypersensitive to non-dimer DNA damages induced by solar ultraviolet radiation
- New
- Research Article
- 10.3390/cosmetics12060247
- Nov 6, 2025
- Cosmetics
- New
- Research Article
- 10.3390/cosmetics12060248
- Nov 6, 2025
- Cosmetics
- New
- Research Article
- 10.3390/cosmetics12060244
- Nov 5, 2025
- Cosmetics
- New
- Research Article
- 10.3390/cosmetics12060245
- Nov 5, 2025
- Cosmetics
- New
- Research Article
- 10.3390/cosmetics12060246
- Nov 5, 2025
- Cosmetics
- New
- Research Article
- 10.3390/cosmetics12060243
- Nov 5, 2025
- Cosmetics
- New
- Research Article
- 10.3390/cosmetics12060242
- Nov 3, 2025
- Cosmetics
- New
- Research Article
- 10.3390/cosmetics12060241
- Oct 31, 2025
- Cosmetics
- Research Article
- 10.3390/cosmetics12060240
- Oct 28, 2025
- Cosmetics
- Research Article
- 10.3390/cosmetics12060239
- Oct 27, 2025
- Cosmetics
- Ask R Discovery
- Chat PDF
AI summaries and top papers from 250M+ research sources.