Abstract

A novel horseradish peroxidase-encapsu- lated silica nanoparticle (SNP) was generated in this study under relatively mild conditions. The generated enzyme-encapsulated SNP were relatively uniform in size (average 70 ± 14.3 nm), monodispersed, and spherical, as characterized by transmission electron microscopy and scanning electron microscopy. The horseradish peroxidase encapsulated in silica nano- particle exhibits biological properties, such as a pH- dependent activity profile and km value, similar to that of free enzymes. Furthermore, enzyme-encapsulated SNP exhibited good operational stability for the repetitive usage with a relative standard deviation of 5.1 % (n = 10) and a high stability for long term storage ((60 days) at 4 C. The feasibility of using enzyme-encapsulated SNP in prodrug cancer therapy was also demonstrated by its capability to convert the prodrug indole-3-acetic acid into cytotoxic peroxyl radicals and trigger the death of tumor cells. These results indicate that the developed enzyme-encapsu- lated SNP has potential in the applications of prodrug cancer therapy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.