Abstract

In the search for new biotechnological advances, increasing attention is currently being paid to the development of magnetic nanoplatforms loaded with enzymes, since, on the one hand, they can be recovered and reused, and on the other hand, they improve their catalytic activity and increase their stability, avoiding processes such as aggregation or autolysis. In this review, we evaluate a series of key parameters governing the enzyme–nanoparticle immobilization phenomena from a thermodynamic and kinetic point of view. We also focus on the use of magnetite nanoparticles (MNPs) as multifunctional vectors able to anchor enzymes, summarize the most relevant aspects of functionalization and immobilization and, finally, describe some recent and relevant applications of the enzyme–MNP hybrids as biocatalysts with especial emphasis on cancer therapy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.