Abstract

Globally, animal feed protein is a key factor for production of meat for human consumption. Protein for animal feed is in many parts of the world not available in sufficient amounts; demand is met only through import of feed protein. Such protein deficit can be minimized through optimized use of local protein resources based on upgrade from e.g. green plant biomass. In present work we consider different strategies for protein recovery from white clover and ryegrass screw press pulps, using aqueous extraction, as well as carbohydrases and proteases enhanced extraction. Protein recovery in these studies was determined as a yield of solubilized protein with regard to the total protein in a screw press pulp. Aqueous extraction at pH 8.0 resulted in approx. 40 % protein recovery, while proteases application (Savinase 16.0L, Novozymes) enabled twice higher protein yield. Application of plant cell wall degrading enzymes (Cellic CTec2 and Cellic HTec2, Novozymes) did not provide detectable protein recovery, while consecutive proteases treatment resulted in approx. 95 % protein yield. RuBisCO peptides were demonstrated by amino acid analysis to be the major component of white clover and ryegrass pulp proteolyzates, generated by Savinase 16.0L protease.

Highlights

  • Biomass conversion and biorefinery technologies, making value from biomass feed stocks, have so far focused primarily on upgrade of the lignocellulosic components of the biomass

  • In this work we summarize our findings in protein recovery from ryegrass (Lolium perenne) and white clover (Trifolium repens) screw press pulps using aqueous extraction, as well as carbohydrases and proteases enhanced extraction

  • Further studies are required for detailed characterization of biological effect of green biomass pulp proteolyzates

Read more

Summary

Introduction

Biomass conversion and biorefinery technologies, making value from biomass feed stocks, have so far focused primarily on upgrade of the lignocellulosic components of the biomass. Imported soybean protein in animal diet can be potentially replaced with leaf protein, only if leaf protein nutritional value at least matches the quality of soybean protein This has still to be proven in commercial scale digestibility tests, several studies have replaced soy meal to a different degree with green plant protein concentrates and reported promising results with no or little negative effect [1,2,3]. After disintegration of fresh green leaves and juice squeezing cytoplasm dissolved proteins are harvested mainly in juice, while plasma membrane associated proteins and organelles proteins (mainly from chloroplasts) are separated between juice and solid press cake (pulp) in a proportion, depending on plant species and pressing techniques (on average, 50 % of total protein remains in pulp fraction, bound with biomass cellulosic matrix). In this work we summarize our findings in protein recovery from ryegrass (Lolium perenne) and white clover (Trifolium repens) screw press pulps using aqueous extraction, as well as carbohydrases and proteases enhanced extraction

Materials and Methods
Results and Discussion
Conclusions

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.