Abstract

Acid and Pseudomonas (P.) cepacia lipase catalyzed ester hydrolysis were evaluated for block copolymer micelles generated from low polydispersity PEG45-b-PBOn-b-PCL60 (n = 0, 6, 9). Moving the hydrophilic–hydrophobic junction away from the PCL micelle core–water interface by inserting a short hydrophobic non-hydrolyzable PBO segment between the PEG and PCL blocks was studied as a strategy for tuning the micelle hydrolytic stability. 1H NMR was applied in evaluating the micelle and solution compositions and to determine kinetic parameters. Acid and lipase catalyzed micelle hydrolysis proceed by distinctly different routes. Micelles from the triblock copolymers PEG45-b-PBOn-b-PCL60 (n = 6, 9) are observed to react substantially slower and persist intact longer in the presence of both strong acids and lipase enzymes than micelles of the parent diblock copolymer (PEG45-b-PCL60).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.