Abstract

The production of isotopically labeled RNA remains critical to current NMR structural studies. One approach to obtain simple NMR spectra is to label with a nucleus that is not naturally occurring in RNA. Fluorine-19 can serve as a sensitive site-specific probe upon incorporation into RNA. Here we report the efficient in vitro enzymatic synthesis of 2-fluoroadenosine-5'-triphosphate and its incorporation into the HIV-2 transactivation region (TAR) of RNA by DNA template-directed transcription using phage T7 RNA polymerase. We provide unequivocal evidence for this 19F-substituted base analogue capability to selectively interact with uracil, forming 2F-A-U base pairs in RNA. The introduction of a 2-fluoroadenyl substitution is relatively nonperturbing and provides us with uniquely positioned, sensitive NMR reporter groups to monitor structural changes in the local RNA environment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.